Plane Strain Slip Line Theory for Anisotropic Rigid/plastic Materials
نویسنده
چکیده
A SLIP line theory governing states of incipient plane flow at the yield point load is developed for anisotropic rigid/plastic materials which exhibit a reduced yield criterion, governing states of plane flow, that depends only on the deviatoric parts of the in-plane stress tensor. It is shown that every homogeneous, incompressible material which complies with the principle of maximum plastic work, but which is of otherwise arbitrary anisotropy, is of this class. The stress equilibrium requirements are seen to take a remarkably simple form expressing the constancy of the quantities mean in-plune normal stress plus or minus arc length around the governing yield contour in a Mohr stress plane along members of the two slip line families. Further, this generalization of the Hencky equations is valid for every material of the considered class. Some special features of yield contours containing comers and flat segments are discussed, and velocity equations are given for materials complying with the maximum work inequality. The theory is applied to obtain the solution for indentation of an arbitrarily anisotropic half-space with a flat-ended, rigid, frictionless punch. A simple, universal formula, involving only geometrical dimensions of the governing yield contour, is derived for the yield point indentation pressure.
منابع مشابه
Effect of Stress Triaxiality on Yielding of Anisotropic Materials under Plane Stress Condition
The triaxiality of the stress state is known to greatly influence the amount of plastic strain which a material may undergo before ductile failure occurs. It is defined as the ratio of hydrostatic pressure, or mean stress, to the von Mises equivalent stress. This paper discusses the effects of stress triaxiality on yielding behavior of anisotropic materials. Hill-von Mises’s criteria for anisot...
متن کاملPlane Strain Problem in Elastically Rigid Finite Plasticity
A theory of elastically rigid finite deformation plasticity emphasizing the role of material symmetry is developed. The fields describing lattice rotation, dislocation density, and plastic spin, irrelevant in the case of isotropy, are found to be central to the present framework. A plane strain characteristic theory for anisotropic plasticity is formulated wherein the solutions, as well as the ...
متن کاملShape- Dependent Term Investigation of Khan- Liu Yield/ Fracture Criterion as a Function of Plastic Strain for Anisotropic Metals
The current paper primarily aims to suggest a mathematical model for the shape-dependent term of Khan- Liu (KL) Yield/ fracture criterion as a function of Plastic Strain for DP590 steel alloy. The shape-dependent term in the mention criterion can generalize the application of this criterion in order to predict the behavior of other materials. Plane stress case and the first quarter of the stres...
متن کاملConstitutive Model for Multi-laminate Induced Anisotropic Double Hardening Elastic-plasticity of Sand
A constitutive multi-laminate based elastic-plastic model developed to be capable of accounting induced anisotropic behavior of granular material such as sand. The fabric feature or grain orientation characteristic effects through medium are considered in a rational way under any complex stress path, including cyclic loading. The salient feature of the developed model is a non-associative on pl...
متن کاملBending-Unbending Analysis of Anisotropic Sheet under Plane Strain Condition
The mechanical behavior of cold rolled sheets is significantly related to residual stresses that arise from bending and unbending processes. Measurement of residual stresses is mostly limited to surface measurement techniques. Experimental determination of stress variation through thickness is difficult and time-consuming. This paper presents a closed form solution for residual stresses, in whi...
متن کامل